
Accelerating NeRFs: Optimizing Neural Radiance
Fields with Specialized Hardware Architectures

William Shen∗, Willie McClinton∗

MIT CSAIL

Abstract—Neural Radiance Fields (NeRFs) have recently
gained widespread interest not only from computer vision and
graphics researchers, but also from cinematographers, visual
effects artists, and roboticists. However, their high computa-
tional requirements remain a key bottleneck which limit their
widespread use. Despite substantial software and algorithmic
improvements, limited attention has been paid to the hardware
acceleration potential of NeRFs. We aim to explore this untapped
potential and conduct an in-depth profile of MLP-based NeRFs.
We identify that the input activations of the fully-connected (FC)
layers have an average sparsity of 65.8% due to the use of
ReLUs, and the weights of ray samples for volumetric rendering
have an average sparsity of 33.8%. We exploit these sparsities
using an Eyeriss-based architecture with sparse optimizations,
resulting in over 50% improvements in performance and energy
for the MLP. Finally, we study post-training FP16 quantization
on a GPU, resulting in 2.7× and 3.1× improvements in render-
ing speed and energy consumption, respectively. Our proposed
methods demonstrate the potential for hardware acceleration to
significantly speed up NeRFs, making them more accessible for
a wider range of applications and low-compute devices.

Website: https://williamshen-nz.github.io/accelerating-nerfs

I. INTRODUCTION

Neural Radiance Fields (NeRFs) have recently gained
widespread interest not only from computer vision and graph-
ics researchers, but also from cinematographers, visual effects
artists, and roboticists. The intrinsic advantages of NeRFs lie
in their ability to compactly represent 3D scenes compared to
traditional methods such as point clouds or meshes, and render
novel viewpoints that capture view-dependent lighting [11].

However, their high computational requirements remain
a key bottleneck which limit their widespread use, often
requiring modern GPUs with substantial VRAM. Accelerating
NeRFs would enable several impactful applications including
real-time rendering on low-throughput devices such as AR/VR
headsets [6], integration as digital assets in game engines
[9], and revolutionizing visual effects [4]. Despite remarkable
progress, efforts to improve training and inference speeds have
focused primarily on algorithmic approaches. The original
NeRF [11] used a large Multilayer Perceptron (MLP) to
model scenes, requiring up to 24 hours of training on a
GPU. Subsequent research has traded off time and space
by combining explicit data structures with smaller MLPs,
such as multiresolution hash encodings in Instant NGP [12]
and voxel grids [16]. Alternative architectures have explored
improving inference speed, using thousands of tiny MLPs [15]
or extracting explicit 3D representations such as polygons [3].

Our project addresses the underexplored area of the poten-
tial of hardware acceleration for NeRFs, particularly during

(a) FP32 (PSNR = 35.13)

2.86× speedup

(b) FP16 (PSNR = 32.78)

Fig. 1: NeRF Quantization. We compare renders from a
trained NeRF using (a) its original FP32 representation, and
(b) its FP16 quantized version. We observe a 2.86× rendering
speedup over the Lego scene at the cost of reduced PSNR.
The visual differences are not obvious unless we pixel peep.

inference. We accomplish this by 1) identifying components
of NeRF that can be optimized and accelerated, 2) designing
hardware architectures to address these bottlenecks, and 3)
assessing the downstream impact on performance in terms of
NeRF rendering quality, throughput, and energy.

Through an in-depth profile of MLP-based NeRFs, we
identify that the input activations of fully-connected (FC)
layers exhibit an average sparsity of 65.8% due to the use of
ReLU activation functions, while the weights of ray samples
for volumetric rendering have an average sparsity of 33.8%.
We exploit these sparsities using an Eyeriss-based architecture
with sparse optimizations, resulting in 60% and 51% improve-
ments in cycles and energy for the MLP, respectively. We
also investigate post-training FP16 quantization on a GPU,
achieving 2.7× and 3.1× improvements in rendering speed
and energy consumption, respectively. Our insights emphasize
the potential of hardware acceleration in making NeRFs more
efficient and accessible, contributing to their development as
a practical and scalable 3D representation for a variety of
applications and low-compute devices.

II. BACKGROUND

We target the original MLP architecture [11] with twelve
FC layers as described in Figure 2. While recent network
architectures have shown substantial speed improvements, they
rely on optimized CUDA implementations and data structures
[12], [16] which are infeasible to model using Timeloop and
Accelergy, and are hence outside the scope of this project.

https://williamshen-nz.github.io/accelerating-nerfs
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Fig. 2: NeRF MLP. The fully-connected (FC) architecture we
use (modified from Fig. 7 in [11]). Green blocks indicate input
tensors, blue indicates hidden FC layers, and red indicates
output FC layers. Black arrows indicate layers with ReLU
activation functions, while orange indicates no activation. The
numbers indicate the dimensionality (dim) of the tensors for
green blocks, and the output dim for FC layers. The σ and
RGB red blocks have an output dim of 1 and 3, respectively.
γ(·) represents positional-encoding, see [11] for details.

NeRFs learn a continuous representation of a 3D scene from
a set of 2D RGB images with known camera intrinsics and
poses. Formally, a NeRF maps a 3D position x = (x, y, z)
and viewing direction d = (dx, dy, dz) into a volume density
using the density field σ(x), and a view-dependent color using
the color field c(x,d) = (r, g, b). NeRF renders a pixel by
sampling N points along a ray r(t) = o + td, where o
is the camera center and t is the distance from the camera.
The color Ĉ(r) of the pixel is estimated using a quadrature
approximation [11] to the volumetric rendering integral [10]:

Ĉ(r) =

N∑
n=1

Tn(1− exp(−σ(xn)δn))︸ ︷︷ ︸
density-based weight

· c(xn,d)︸ ︷︷ ︸
color

, (1)

where Tn = exp(−
∑n−1

j=1 σ(xj)δj) is the accumulated trans-
mittance, xn = r(tn) is a point sampled along ray r, and
δn = tn+1 − tn. During training, NeRF samples batches of
rays from the training images and optimizes the photometric
loss. During inference, NeRF renders an image by generating
all the rays corresponding to the desired camera parameters,
and uses volumetric rendering to estimate the color of each
pixel. We refer the reader to [11] for a deep dive into NeRFs.

III. RELATED WORK

In this work, we aim to accelerate NeRF inference by lever-
aging hardware architectures, a topic that has seen limited but
growing interest. RT-NeRF [6] focuses on grid-based NeRFs
(i.e., TensoRF [1]), and uses hybrid encodings for sparse
grid embeddings to enable real-time rendering, while [19]
proposes a resistive random access memory (RRAM)-based
accelerator and leverages the parallel dataflow of MLP-based
NeRF rendering to increase RRAM utilization. Our work
is most similar to ICARUS [14], an accelerator architecture
for MLP-based NeRFs which avoids off-chip data movement
using custom positional encoding units, a MLP engine, and
volumetric rendering units. Two papers were released after
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Fig. 3: Breakdown of NeRF render time. We present the
normalized breakdown of the three main components of NeRF
over the synthetic benchmark. See Section IV-A for details.

our project proposal submission. GenNeRF [5] focuses on
generalizable NeRFs and replaces the transformer with Ray-
Mixers and exploits geometric relationships across rays to
maximize data reuse. Instant-3D accelerates grid-based NeRFs
by decomposing the embedding grid into color and density
grids, and uses a mapper to maximize SRAM reuse [8].

In comparison, we target MLP-based NeRF inference and
perform an in-depth profile to uncover patterns which can be
exploited. Different to [14], [19] which also target MLPs, we
exploit the sparsity of the activations exhibited within each
FC layer. We believe our work is valuable given the limited
existing research, helping shed light on accleration approaches.

IV. TECHNICAL CONTRIBUTIONS

Firstly, we conduct an extensive profile of our NeRF MLP
architecture depicted in Figure 2. We then explore avenues
for acceleration and demonstrate significant improvements in
metrics including performance and energy.

A. NeRF Setup and Profiling

We train NeRFs on all 8 scenes of the synthetic benchmark
[11] using a batch size of 1024 rays for 50000 steps. We
modify the reference implementation provided by Nerfacc
[7] (details in Appendix A). We evaluate our NeRFs by
rendering 200 test frames on each scene in the benchmark
at a 400 × 400 resolution. We profile the time required for
1) positional encoding of ray samples, 2) MLP forward pass,
and 3) volumetric rendering. Our results in Figure 3 show that
the majority of rendering time may be attributed to the MLP
forward pass, with volumetric rendering coming in second. We
focus our efforts on accelerating these two components.

We additionally analyze the sparsities of the input activa-
tions and weights of each fully-connected (FC) layer. We find
that while the weights have zero sparsity, the input activations
exhibit high sparsity due to the use of the ReLU activation
(see Figure 4), with an average sparsity of 65.8% excluding
fc_1 and fc_11. Figure 5 shows that the density-based
weights used by volumetric rendering (see Eq. 1) also exhibit
an average sparsity of 33.8%. Recall NeRF renders a pixel by
sampling multiple points along a ray; many points have zero
density as they represent free space and can be skipped.
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Fig. 4: Activation Sparsity of NeRF MLP Layers. We show
the average and standard deviation of the input activation
sparsities of the FC layers averaged over renders on the syn-
thetic benchmark [11]. fc_1 receives position-encoded inputs,
while fc_11 receives the outputs from fc_10 which has no
activation function. See Figure 8 for per-scene breakdown.

Energy Cycles EDP Area
(µJ) (J ∗ cycle) (mm2)

Eyeriss 650.93 568192 3.70e8 16.51
w/ Compression only 416.01 568192 2.36e8 10.89
w/ Skipping only 386.28 307616 1.19e8 10.89
w/ Gating only 336.59 307616 1.04e8 10.25

w/ Skipping 316.71 227813 7.22e7 10.89
w/ Gating 313.05 307611 9.63e7 10.25

TABLE I: Eyeriss - Activation Sparsity. We show the results
of Eyeriss with several ablations to exploit the activation spar-
sities of the FC layers. ‘w/ Skipping’ and ‘w/ Gating’ use both
onchip compression and skipping and gating, respectively.

Overall, our NeRF profile unveiled valuable insights into
computational costs and sparsity patterns, guiding our choice
of components to accelerate in the following sections.

B. Exploiting Activation Sparsity

The sparsity exhibited by the activations of the FC layers
result in ineffectual computations which we can exploit at
the hardware level. We experiment with Eyeriss, a convolu-
tional neural network (CNN) accelerator that reduces energy
consumption while maximizing performance [2]. Although
Eyeriss was designed for CNNs, we use it for NeRFs by
mapping the FC layers to 1× 1 convolutions. The accelerator
achieves improved performance and energy through a row
stationary dataflow that maps workloads onto a 2D grid of
168 PEs which process simultaneously to maximize data reuse
and reduce off-chip accesses. Eyeriss also supports sparse
optimizations which are beneficial for our use case including
onchip compression and decompression of sparse input and
output activations to and from the on-chip global buffer. It
can avoid ineffectual computations by either gating for keeping
hardware idle, or skipping to the next effectual computation.

We use the average sparsity across scenes as input to
Sparseloop [18] and Accelergy [17] with a batch size of 128
ray samples to find mappings and estimate energies for our
sparse designs, as the sparsities are relatively consistent across
the benchmark (Figure 8). Following Sparseloop naming
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Fig. 5: Volumetric rendering weight sparsity. We show the
average and standard deviation of the sparsity of the weights in
the ray samples for volumetric rendering. We find that sparsity
is scene dependent, and the overall mean sparsity is 33.8%.

conventions, we use Uncompressed Offset Pairs-Run Length
Encoding (UOP-RLE) compression of the sparse activations.
This leads to lower memory requirements and ideally energy
consumption. We use Timeloop [13] to evaluate a dense
baseline Eyeriss design without sparse optimizations.

Table I presents our results across the baseline Eyeriss
and various ablations that exploit sparse optimizations includ-
ing onchip compression, skipping and gating. We find that
compression alone significantly reduces the energy by 36.1%
through reducing the amount of data that needs to be moved
around. The improvements from using skipping or gating only
lead to better results by avoiding ineffectual computations,
as demonstrated by the reduction in cycles by 45.9%. The
overhead of the additional hardware required by skipping is
shown by the 50µJ increase in energy required by skipping
versus gating only. We observe a further reduction in the
cycles and energy when we combine sparse compression with
skipping, with a 60% and 51.3% reduction in cycles and
energy compared to dense Eyeriss, respectively. This com-
bination results in the lowest EDP and potentially increases
the throughput as fewer cycles need to be processed within
a given period of time. In fact, there is a 25.9% decrease
in cycles compared to skipping only, demonstrating that the
sparse compression allows us to efficiency encode the pattern
of zeros in a manner that is amenable for the underlying
skipping hardware and PE grid.

Our results demonstrate the clear benefit of exploiting the
sparsity of the activations in the FC layers at a hardware-level.
We achieve significant gains in energy and cycles by avoid-
ing ineffectual computations and using sparse encodings to
compress the activations. However, it is also important to note
that skipping and gating introduce additional complexity to the
hardware. These overheads may trump potential improvements
when the activations exhibit low sparsity. We found this was
the case for fc_1 which has near-zero activation sparsity.

C. Accelerating Volumetric Rendering

Volumetric rendering is fundamentally a weighted sum of
the density-based weights and RGB values, as shown in
Equation 1. This can be represented as a dot product between
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Fig. 6: Volumetric Rendering EDP Improvement by scene.

Energy (µJ) Cycles EDP (J ∗ cycle) Area (mm2)

Eyeriss 0.04 16 6.24e-07 1.38
w/ Skipping 0.03 11 3.42e-07 0.91
w/ Gating 0.03 11 3.50e-07 0.85

TABLE II: Eyeriss - Volumetric Rendering. Eyeriss results
with sparse optimizations for dot products.

a vector containing the weights and a vector of color values.
Figure 5 shows that these density-based weights exhibit scene-
dependent sparsity, with an overall mean of 33.8%. Similar
to exploiting activation sparsity, we investigate how we can
leverage the weight sparsity to accelerate volumetric rendering.

We use the Eyeriss setup described previously in Section
IV-B, and extend it to compute dot products. Observe that dot
products are equivalent to 1x1 convolutions with a filter size
equivalent to the size of the vector. Hence, we can seamlessly
adapt Eyeriss to efficiently handle volumetric rendering. We
evaluate the impact of onchip compression with skipping or
gating, as these produced the best results in Section IV-B.

We present our results on a batch size of 128 ray samples
in Table II, and the per-scene relative EDP improvement
compared to the dense Eyeriss baseline in Figure 6. We
observe significant improvements in energy and performance,
as demonstrated by the near 50% reductions in energy-delay
product. Unsurprisingly, there is a strong positive correlation
between the EDP improvement and weight sparsity – the
higher the sparsity, the better the improvement. While our
results are promising, we may expect the improvements from
sparse optimizations to diminish as more intelligent ray sam-
pling strategies are developed to further reduce the number of
samples with zero weight and hence decrease sparsity.

D. Quantization from FP32 to FP16

We explore post-training half-precision (FP16) quantization
with no additional fine-tuning to further improve the energy
efficiency and rendering speed of NeRFs. We evaluate the
FP32 and FP16 NeRFs using PyTorch on a NVIDIA RTX
3090 GPU, and estimate energy by multiplying the render time
by the average power draw of the GPU during the render for a
given scene. Note that recent NVIDIA GPUs have tensor cores
which accelerate FP16 matrix multiplies. To make our project
feasible within the limited time, evaluation of quantization on
specialized hardware architectures is left as future work.
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PSNR (FP32) PSNR (FP16) Decrease (%)

chair 35.11 33.91 3.42%
drums 26.25 25.93 1.19%
ficus 32.93 32.06 2.62%
hotdog 36.93 36.24 1.87%
lego 33.72 32.74 2.90%
materials 30.34 29.86 1.58%
mic 34.59 33.52 3.10%
ship 29.85 29.43 1.39%

TABLE III: Effect of quantization on PSNR. We compare
the PSNR averaged over 200 images rendered for each scene
on the original NeRF (FP32) and its quantized FP16 version.

We present the improvements in overall speed and energy
in Figure 7, and a detailed breakdown in Appendix D. The
average power draw was 320.7W for FP32 and 277.5W for
FP16. We compare the quality of the rendered images with the
peak-signal-to-noise ratio (PSNR), which measures how much
noise there is compared to the ground truth (lower is worse).
Table III shows the reduction in PSNR due to quantization.
Across all scenes, we observe a 2.26% decrease in PSNR and
significant 2.72× and 3.14× improvements in the speed and
energy, respectively. While PSNR is marginally decreased, the
qualitative effects of this are difficult to observe unless we
pixel peep, as shown in Figure 1 and the videos on our website
(click here). Another benefit of FP16 quantization is that the
model size is reduced by half from 2.4MB to 1.2MB.

Overall, we believe that the improved model size, rendering
time, and energy consumption offset the loss in PSNR, which
may be especially valuable in low-compute environments.
Thus, this warrants further investigation on custom hardware
architectures and potential quantization to INT8.

V. CONCLUSION

We investigated the potential of hardware acceleration for
MLP-based NeRFs. Our experiments showed an Eyeriss-based
architecture with sparse optimizations achieves significant per-
formance and energy improvements, allowing us to accelerate
the MLP and volumetric rendering. Post-training FP16 quan-
tization further gains in render speed and energy. Though our
work targets MLP-based NeRFs, our findings may generalize
to other models that use MLPs in some form. Future work
includes designing hardware that is flexible for a variety of
NeRF architectures, and developing a customized accelerator
for NeRFs through an algorithm-hardware co-design.
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APPENDIX

A. Implementation Details

NeRF Implementation. We modified the reference NeRF
MLP implementation provided by Nerfacc [7], which includes
a CUDA-based software accelerator for supporting skipping
of ray samples with zero density. This is achieved via an
occupancy grid transmittance estimator first introduced in
Instant-NGP [12]. We excluded this software accelerator time

from our analysis, as it is only used for reducing the number
of ray samples. This does not alter the validity of our analysis
or results, as we expect the distribution of the workload to be
similar if not only more exploitable when using the original
coarse-to-fine ray sampling strategy from [11].

Problem Specification for Timeloop and Sparseloop.
We convert the twelve fully-connected layers in our NeRF
architecture (Figure 2) using the pytorch2timeloop library.
We specify the densities (i.e., 1− sparsities) of the input
activations, weights, and output activations of each layer using
the values computed from our NeRF profile over the synthetic
benchmark. Recall the FC layer weights have zero sparsity.

B. Input Activation Sparsity

Figure 8 depicts the input activation sparsity of the fully-
connected layers in trained NeRFs over several scenes. We ob-
serve that while the sparsity of the layers fluctuates depending
on the scene, the overall sparsity is relatively consistent.

C. Volumetric Rendering

Table IV depicts the per-scene results over the synthetic
benchmark from using a Eyeriss-based architecture with
onchip sparse compression and gating. This architecture has
an area of 0.91mm2.

Energy (µJ) Cycles EDP (J ∗ cycle)

chair 0.03 11 3.33e-07
drum 0.03 9 2.55e-07
ficus 0.03 8 2.20e-07
hotdog 0.03 11 3.40e-07
lego 0.03 10 2.98e-07
materials 0.03 13 4.37e-07
mic 0.03 13 4.35e-07
ship 0.03 13 4.30e-07

TABLE IV: Volumetric rendering for each scene over the
synthetic benchmark with an Eyeriss architecture using onchip
compression and gating for dot-product computations.

D. Quantization

Render Time (s) Energy (kJ)
FP32 FP16 FP32 FP16

chair 116.75 43.74 37.68 11.80
drums 121.70 44.75 39.30 12.15
ficus 60.63 26.21 18.38 6.58

hotdog 243.52 81.12 82.49 23.72
lego 154.57 54.09 49.98 15.89

materials 148.09 51.45 47.55 14.69
mic 59.07 26.52 17.53 6.36
ship 354.27 114.59 119.35 36.19

TABLE V: We show the breakdown of render time and energy
for FP32 and FP16 quantized NeRF.
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Input Activation Sparsity on Ficus dataset
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Input Activation Sparsity on Hotdog dataset
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Input Activation Sparsity on Lego dataset
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Input Activation Sparsity on Materials dataset
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Input Activation Sparsity on Mic dataset
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Input Activation Sparsity on Ship dataset

Fig. 8: Activation Sparsity of NeRF MLP Layers. We depict the average and standard deviation of the input activation
sparsities of the fully-connected (FC) layers of NeRFs trained on the synthetic benchmark [11]. See Figure 2 for the MLP
architecture. By rendering 200 test images per scene, we find an overall average sparsity of 65.8% in the FC layers, excluding
fc_1 and fc_11. Note that fc_1 receives the position-encoded ray samples while fc_11 receives the output from fc_10.

6


	Introduction
	Background
	Related Work
	Technical Contributions
	NeRF Setup and Profiling
	Exploiting Activation Sparsity
	Accelerating Volumetric Rendering
	Quantization from FP32 to FP16

	Conclusion
	References
	Appendix
	Implementation Details
	Input Activation Sparsity
	Volumetric Rendering
	Quantization


