
Table Cleaning through Task and Motion Planning
with Force Control

William Shen
MIT CSAIL

willshen@mit.edu

Abstract—We present a framework for solving table cleaning
tasks which requires long-horizon planning and reasoning, rep-
resenting a desirable skill towards building general household
robots. Table cleaning requires (1) pick and place to clear
clutter off the table, (2) wiping small objects (e.g. crumbs, diced
vegetables) off the table with a sponge, and (3) the non-prehensile
manipulation (e.g. dragging) of objects which are too large for
the gripper to directly pick up. We model this problem using
search-then-sample-based Task and Motion Planning (TAMP),
which requires high-level symbolic task planning followed by
low-level continuous motion planning. We investigate different
sampling-based motion planning algorithms and force controllers
to implement our low-level primitive behaviors. Our experiments
in simulation demonstrate that, despite the limitations in our
implementation, our TAMP-based system is able to solve long-
horizon manipulation tasks.

Index Terms—robotics, force control, task and motion planning

I. INTRODUCTION

Robots are making an ever-increasing presence in both
the home and work setting, allowing us to save time and
become more productive by offloading menial yet important
tasks to robots. Despite the prevalence of robots that are
able to perform specialized tasks including vacuuming, pool
cleaning, lawn mowing, or even home monitoring [1], we are
far from building single robot systems capable of achieving
a variety of tasks in unstructured environments. This may
be attributed to several factors including the difficulty of
developing algorithms which are able to reason about long-
horizon behaviors and generalize to unseen environments.

Nevertheless, it is not impossible to imagine a (distant)
future where it is common for a household to have a general
robot capable of performing chores including cleaning, cook-
ing, laundry, etc. In an effort towards making a small step
to achieving that vision, this paper presents a system which
allows a robot to clean a table. This could be a dining table
with tableware, food containers and crumbs which need to be
cleared and stored in their desired locations.

We consider a simplification of table cleaning, an example
of which is depicted in Figure 1. Cleaning a table requires
the ability to (1) pick and place to clear clutter off the table,
(2) wipe small objects (e.g. crumbs, diced vegetables) off
the table with a sponge, and (3) drag (i.e., non-prehensile
manipulation) objects which are too large for the gripper to
directly pick up. Subsequently, this paper will explore motion

6.843 Manipulation Project – 2021

Fig. 1. A scenario where the goal is to place the green and blue box into the
right bin, wipe the red and orange cube into the red dustpan using the yellow
sponge, and place the sponge into the left bin (in any goal-satisfying order).
Observe that the green box blocks the red cube from being wiped into the
dustpan, and the blue box lies flat on the table and cannot be directly grasped.

planning through rapidly-exploring random trees (RRTs) [2]
for pick and place, and hybrid force-position control along
with cartesian impedance control [3] for wiping and dragging.

We model our table cleaning problem using a simplified
version of the “search-then-sample” Task and Motion Planning
(TAMP) approach in [4]. At a high level, our framework:

1) Given a domain and problem definition described in
PDDL [5], uses an off-the-shelf AI planner to search
for a high-level symbolic plan.

2) Uses continuous motion planning with sampling to find
a corresponding low-level plan that achieves the goal.

If low-level motion planning is unsuccessful, then we add
additional constraints, search for a new task plan, and repeat
the aforementioned process.

In the remainder of this paper, we firstly discuss related
work in Section II and define the table cleaning problem
in Section III. Section IV discusses our framework and the
techniques we explored. Finally, Section V presents the results
of our experiments which demonstrate that we can successfully
solve table cleaning tasks which require reasoning.

We refer to our project website for additional details includ-
ing our presentation and video demonstrations1.

1https://williamshen-nz.github.io/manipulation-project

https://williamshen-nz.github.io/manipulation-project


Fig. 2. The purple cube is too small to be grasped by the robot. Hence, we
use a sponge to wipe it to the dustpan. The green arrows depict the contact
forces and show that the robot is exerting a force into the table. The dotted
blue line shows setpoints we could use to wipe the object into the dustpan
for cartesian impedance control.

II. RELATED WORK

We refer the reader to [6] for a review of classical and
learning-based control approaches to solving a variety of
cleaning tasks, such as sweeping, vacuuming and wiping.
Although there are several existing approaches to general
household cleaning including table cleaning and specific sub-
problems (e.g. ‘dirt’ modelling), they do not model the prob-
lem as a TAMP problem and hence may not be able to
generalize as well across different numbers and configurations
of objects, or struggle with long-horizon problems.

Elliot and Cakmak [7] propose moving dirt particles in one
region on a table to another region using heuristic search
on a 2D grid-based representation of the table. Another
work considered using Convolutional Neural Networks to
detect litter on a table, and then used depth first search
and Probabilistic Road Maps to generate a motion plan [8].
Yang et al. [9] use learning from demonstration to train a
rhythmic Dynamic Movement Primitive to imitate a variety
of primitive tasks including wiping and stirring. In contrast
to the work discussed above, we focus on the composition of
multiple ‘skills’ which are not learned, and use a TAMP-based
approach. Additionally, to limit the scope of our project, we
assume that perception is solved.

Task and Motion Planning (TAMP) solves the problem of
planning for a robot operating in diverse environments with
a potentially large number of objects and actions – this is
usually achieved through a mix or interleaving of high-level
task planning and low-level motion planning [10]. TAMP
allows us to solve long-horizon problems that may require
substantial reasoning, which is apt for our table cleaning task.
For example, in the scenario depicted in Figure 1, our planner
must reason that the green box must be moved out of the way
before anything can be wiped into the red dustpan.

PDDLStream is a state-of-the-art TAMP framework which
samples for continuous parameters and then reduces the TAMP
problem into solving a sequence of PDDL problems [11]. We
choose to focus on the approach presented in [4], in which
task planning and motion planning are connected through a
planner-independent interface layer. We discuss this in more

Fig. 3. The green box cannot be directly grasped by the robot. Hence we
need to drag it to the side of the table so it may be grasped.

detail in Section IV.
A recent work considered extending PDDLStream [11] for

forceful manipulation tasks, such as opening a childproof
medicine bottle [12]. Although our work uses a different flavor
of TAMP, it is in a similar vein in that our problem requires
behaviors that are based on forceful operations.

III. TABLE CLEANING

We consider the simplified task of cleaning a table with an
arbitrary number of small, medium and large objects on top of
it. To achieve the goal, the robot must clear all these objects
off the table and place them into bins. The initial state of an
example scenario is depicted in Figure 1.

We assume that the small sized objects on the table may
consist of particles (e.g. crumbs or grains) and small shapes
(e.g. diced vegetables) which are too small for the robot to
directly manipulate with a gripper. Hence, we give the robot
access to a sponge which can be used to wipe the small objects
off the table into a dustpan. Note that in order to effectively
clean the table, the robot must exert a force into the table, as
depicted in Figure 2.

The medium and large sized objects (e.g. cereal box, soup
can) need to be cleared off the table and put into bins
using pick and place. However, we also consider situations
where there may not exist a grasp for a given object due to
its orientation and/or position. Hence we need to drag the
object (i.e., non-prehensile manipulation) using force control
techniques to ‘re-position’ it so we may use standard pick and
place – an example is shown in Figure 3.

A. Task Planning Formulation

The Planning Domain Definition Language (PDDL) is used
to describe symbolic planning problems. Problems in PDDL
are defined in terms of a domain and problem file. The domain
file specifies the predicates and actions achievable in the
environment, while the problem file specifies the objects and
the initial and goal state for a given problem. At a high level,
PDDL allows us to model actions in terms of (1) the facts
that must hold true in order for an action to be applied – i.e.,
preconditions, and (2) the facts that result from applying an



action – i.e., effects. We refer the reader to [5] for an in-depth
explanation of PDDL.

For our simplification of the table cleaning task, we require
four PDDL actions: pick, place, wipe and drag. For example,
in order to wipe an object x from the table into the dustpan,
one precondition is that the robot must be holding the sponge
(i.e., holding(sponge) and is_sponge(sponge)),
while an effect after wiping is that object x is no longer on
the table but is on the dustpan (i.e., ¬in_bin(x, table)
and in_bin(x, dustpan)). We link the domain PDDL
along with the problem PDDL for the scenario in Figure 1 on
our project website2.

B. Assumptions

We assume that perception is solved, and that we have all
the geometric information required to formulate the TAMP
problem. This includes information to determine whether an
object is too small to be grasped and hence needs to be wiped,
or whether an object is to too large and requires non-prehensile
manipulation. These properties are expressed in our PDDL
problem files and in the simulation environment.

Additionally, an important assumption we make is that we
have a sampling function that, for a given object, can sample
for stable grasps if one exists. In our implementation, we
provided manually defined ‘good’ grasps for objects due to
time limitations and difficulties in extracting the geometry of
objects from Drake without cameras.

IV. OUR TAMP FRAMEWORK

We consider a simplification of the search-then-sample
framework presented by Srivastava et al. [4], in which high-
level task planning is connected to low-level motion planning
via a planner-independent interface. This interface performs
sampling and manages the symbiosis between the task planner
and the motion planner. The general process is depicted in
Figure 4.

It is important to note that we compute a goal-satisfying
plan offline and then pass the plan to our robot to execute.
Hence, we do not do any replanning as we execute our low-
level plan. In the remainder of this section, we firstly describe
our simplification of Srivastava et al.’s approach, then discuss
force control and motion planning techniques, and conclude
by presenting the primitive operators we define.

A. TAMP Planner Logic (as shown in Figure 4)

We firstly feed the domain and problem PDDL for a TAMP
problem to an off-the-shelf AI task planner to get a symbolic
plan P with a sequence of actions a1, . . . , an. Note that the
task planner operates in a discrete state space and completely
ignores geometry – hence the task plan may not be successful
at the motion planning level.

We assume that each action ai can be mapped to a primitive
operator which contains additional parameters required to
perform motion planning and run our force controllers. For

2https://williamshen-nz.github.io/manipulation-project

Fig. 4. A high level process diagram of the search-then-sample TAMP
approach which we base our framework upon. Diagram from [4].

example, Pick(box, table) can be mapped to a primitive
controller Pick(box, table, ?grasp pose).

Now, for the first action a1 in our task plan, the interface
samples for any relevant parameters in its primitive operator.
Then, we run motion planning with the sampled parameters to
get a motion plan (i.e., a trajectory). For Pick, we sample for
a ?grasp pose and then plan for a collision-free trajectory to
move the gripper to the desired pose. If motion planning fails,
we re-sample for new parameters and attempt to motion plan
again.

If this does not succeed after r tries, then we assume that
the current action ai cannot be executed in the low-level
continuous state of the environment. An example of a failure
for Pick(box, table) would be if another object near the box
prevents us from grasping it. Our interface then adds additional
constraints to the PDDL domain or problem and/or our task
planner to generate a new task plan and repeat the previously
mentioned steps.

For example, in the scenario in Figure 1, any plan in which
we try to wipe an object before we pick up the green box
would fail. Hence we could add an additional precondition
to the Wipe PDDL action which states that the green box is
no longer on the table. Given time constraints, we did not
implement this logic in code but instead used a human to
emulate this process by eliminating non-viable task plans as
we ran our motion planners.

If motion planning succeeds for a1, then we repeat the
sampling then motion planning process for all the remaining
actions a2, a3, . . . , an in the high level plan. If low-level plan-
ning for the entire task level plan succeeds, then we execute
the plan using the sampled parameters in our simulator.

For a better understanding of this overall approach, we refer
the reader to the original paper [4]. It is important to note we
made several assumptions in our final implementation which
restricted the generality of our approach, such as pre-defining
good grasps and fixing end positions for wiping. This was to
ensure our project was feasible in the limited time frame – we
detail these assumptions in Section IV-D and V.

B. Force Control

We use force control to refer to any control technique which
commands forces – e.g., direct force control, stiffness control,
impedance control, etc. Table cleaning requires force control

https://williamshen-nz.github.io/manipulation-project


Fig. 5. The axes we use for our table cleaning problem, depicted as colored
arrows. The positive x axis is red, y axis is green, and z axis is blue.

for wiping and dragging, as we wish to exert forces into the
table or an object.

We consider a robot manipulator whose dynamics can be
described by:

τ = M(q)q̈ + C(q, q̇)q̇ + g(q) + τext (1)

where M is the mass matrix, C is the Coriolis term, g(q) are
joint torques due to gravity, and τext are the external torques
commanded to the robot [13]. By the principle of virtual work,
we can write the external joint torques in terms of a desired
Cartesian spatial force command Fd, such that:

τext = JT (q) · Fd (2)

where JT (q) is the transpose of the Jacobian for the current
configuration q, and Fd = [τr, τp, τy, fx, fy, fz]

T . τr, τp, τy
are the desired torques for roll, pitch and yaw, respectively;
while fx, fy, fz are the desired forces in the x, y and z axis,
respectively [13], [14].

Based on Equation 2, we can view both hybrid force-
position control and Cartesian impedance control as methods
for computing a Cartesian force Fd given desired cartesian
position/force inputs.

Hybrid Force-Position Control allows us to command
desired positions in certain axes and desired forces in others.
The main advantage of this approach is that it allows us to
regulate the exact amount of force we wish to exert (e.g. we
wish to exert 100N of force into the table).

Our axes of reference are shown in Figure 5. For wiping
with a sponge, we wish to exert a force into the table by
commanding a negative force in the z axis, while we wish to
command positions in the x and y axes in order to move the
sponge around the table.

We attempted to implement an open-loop PD control
method, where we provided desired x and y positions, a
desired force in the z axis, and additionally a desired ori-
entation with the gripper facing down as shown in Figure 5.
This control method computes a desired Cartesian force Fd,
which we then use to compute the external torque τext through
Equation 2. For the sake of brevity, we refer to Chapter 7.1.5 in
the Manipulation Course Notes [13] for the full derivation of a

PD-based hybrid-force position controller. Our implementation
was based off the hybrid force-position control notebook in the
problem set for the course.

Although we were able to exert forces into the table, we
found that it was very difficult and time consuming to (1) tune
the proportional and differential gains of the PD controller to
smoothly move across the table whilst maintaining contact,
and (2) maintain the desired roll, pitch and yaw of the end-
effector. For these reasons, we decided to focus on a Cartesian
impedance controller.

Cartesian Impedance Control allows our robot to act like
a mass-spring-damper system with adjustable stiffness and
damping parameters [14], [15]. For wiping and dragging, we
wish to be compliant in the z axis to ensure we can exert
a force into the table/object, and stiff in the x and y axes
to allow horizontal movement. We implemented an open-loop
cartesian impedance controller. For simplicity in notation, we
assume a pose X = [θr, θp, θy, px, py, pz]

T ∈ R6 describes the
roll-pitch-yaw angles and x, y and z positions, respectively.

Now, given a desired pose of the end-effector WXD in
the world frame W , we use the following control method to
compute the cartesian force Fdes.

Fdes = Ks(
WXD − WXC) +Kd(Vd − V )

where Ks ∈ R6×6 is the diagonal stiffness matrix, WXC is
the current pose, Kd ∈ R6×6 is the diagonal damping matrix,
V is the current spatial velocity, and Vd is the desired spatial
velocity which we set to 0.

We used quaternion differences to compute errors in the
rotations. This allows us to overcome issues with computing
angle differences using a roll-pitch-yaw formulation (e.g. 0
and 2π are the same angle but lead to an error of 2π, not 0).
We computed errors in the translation with pd − p, where pd
is the desired translation and p is the current translation.

Note that we may specify unique stiffness/damping co-
efficients for each roll-pitch-yaw angle and x, y, z position.
Similar to the approach in [12], we fix damping to be critically
damped with Kd = 2

√
Ks and only adjust the stiffness

parameters Ks in our final implementation.
Now, in order to exert a force into the table, we can simply

define a desired pose of our end-effector with some z position
that is underneath the surface of the table. Then, to move
across the table while exerting that force, we can simply vary
the x and y position. An example of these setpoints is depicted
by the dotted blue line in Figure 2.

We argue that cartesian impedance control is a simpler
approach than hybrid force-position control – the latter re-
quires us to carefully tune the coefficients of the PD controller
which may take several hours if not days of experimentation.
However, cartesian impedance control comes at a disadvantage
in that we cannot command a desired value for force, and
hence there is no guarantee on the magnitude of the applied
force.



C. Motion Planning

We wish to find a collision-free path of configurations
between an initial qinit and goal configuration qgoal.

We consider the popular sampling-based Rapidly-Exploring
Random Tree (RRT) algorithm. At a very high level, RRT
incrementally constructs a tree by randomly sampling for
configurations and growing a tree by biasing the search into
the largest Voronoi region. This allows the graph to grow
in a uniform manner and leads to impressive performance,
considering the randomness of the approach [2]. We based our
implementation of the RRT algorithm on the code provided
in Exercise 8.2 of the Manipulation Textbook [13]. We do
not discuss the core algorithm behind RRT, as it is well
documented and studied in several papers [2], [16].

In our initial experiments, we found that vanilla RRT was
very slow and the solutions it returned were of poor quality
and resulted in the RRT ‘dance’. To address these issues, we
firstly added goal-biased sampling where, with a probability
of x, we would sample the goal configuration. This can be
thought of as biasing the RRT search towards the goal – we
found that using x = 0.05 was helpful and sped up planning
significantly.

Vanilla RRT returns the first solution when is reached qgoal
– hence, there is no guarantee on the quality of this plan.
We improve the quality of our RRT plans by maintaining
a collection of goal-achieving paths, and run RRT up to a
pre-defined maximum number of iterations or time limit [2].
Once we exhaust the maximum iterations or time, we return
the best plan in terms of path length. We also found that
re-running RRT multiple times allowed us to achieve better
quality solutions. By re-initializing the tree, we remove any
potential biases induced by existing random samples.

We note that path length is not an amazing metric, given
the differences between each step of the path is not fixed and
may vary. Despite this, we found that this approach provides
better plans and prevents the robot from ‘dancing’ as much.

Finally, to further speed up planning time, we additionally
implemented bidirectional RRT. At a high level, we grow two
trees at the same time – one tree is rooted at qinit while the
other is rooted at qgoal. If we are able to extend both trees
to connect to a sampled configuration qsample, then we can
connect both trees together to get a valid path from qinit to
qgoal [17].

The planning time improved significantly when using bidi-
rectional RRT over RRT, but we surprisingly discovered that
the path length was worse. Although we do not have a good
explanation for this, we theorize that we are more susceptible
to randomness when growing two trees instead of one, and
hence increase potential noise in the final plan. Because of this,
we used RRT over bidirectional RRT in our final experiments.

One significant disadvantage of RRT to consider is that it
is not a complete algorithm, meaning that it will run forever
if there is no path from qinit to qgoal. Thus, if we exhaust
our maximum number of attempts for each run of RRT, we
conclude that motion planning has failed.

D. Primitive Operators
Now that we are equipped with our Cartesian impedance

controller and RRT algorithm for collision-free motion plan-
ning, we discuss how to implement the pick, place, wipe and
drag primitives.

Pick. To pick an object from a given bin, we firstly need to
determine a grasp pose. We sample for a pose using a grasp
sampler, and then use Inverse Kinematics (IK) to compute
a joint configuration which achieves the desired pose. Next,
we use our modified RRT algorithm described in Section
IV-C to compute a collision-free path from the robot’s current
configuration. At the goal configuration, we can then close the
gripper to grasp the object.

In practice, our grasp sampler was a pre-defined good
‘grasp’ that we manually defined. That being said, it is not too
difficult to write a grasp sampler, but it is a time consuming
engineering problem. We could do so with point clouds and
antipodal grasps, a topic we explored in the course.

Place. We follow a similar methodology to that for Pick.
We determine a desired pose by manually dividing our bin
into 2 areas for placing objects, and open the grippers once
we reach the desired configuration.

Wipe. To simplify wiping, we only consider wipes in a
straight line directly to the dustpan along the y axis. We
do not expect that it would be wildly difficult to extend our
approach to movement along both the x and y axes, as it only
requires additional interpolation to determine desired setpoints
and checking those setpoints for collisions.

We split wiping into (1) moving to a pre-wipe pose, (2)
going down to exert a force into the table with the given
sponge, (3) wiping the object across the table, and (4) going up
to a post-wipe pose. We implement (1) with position control
and (2)-(4) with impedance control.

To determine a pre-wipe pose, we compute a fixed offset
from the object to be wiped (we offset in the y axis by -0.2m
and z axis by 0.2m). We then use IK and RRT to determine
a collision-free path to get to the pre-wipe pose.

Next, we compute a trajectory of desired Cartesian setpoints
in order to go down and exert a force into the table, move
across the table to the dustpan, and then go up. We specify
a fixed z position of -0.05m to exert a force into the table
(note the end-effector frame is not at the tips of the gripper
but between the tips and the last joint of the robot).

To determine whether this trajectory is collision-free, we run
a simple grid-based search along the proposed path of setpoints
and check if there are any other non-wipeable objects blocking
the way - if so, then we consider motion planning as failed.
If there are no collisions, we pass the desired setpoints to our
Cartesian impedance controller at simulation time.

Drag. The required methodology for drag is similar to wipe
in which we have a desired pre-drag pose, specify setpoints to
drag the object across the table, and go back up into a post-
drag pose. Now, instead of using a sponge we exert forces into
the object using the tips of the gripper.

We also need to ensure that we do not drag the object such
that its center of mass is no longer on the table because it



would fall off. We compute the end setpoint for dragging by
considering the size of the object in the x and y axes.

We manually tuned stiffness parameters for wiping and
dragging and decided on a stiffness of 100 for the x and y
position, and 10 for the z position as we wish to be compliant
in the z-axis. We used a value of 10 for rotational stiffness.

In theory, many of these parameters for wiping/dragging
can be sampled but it did not make sense given the limited
time we had to complete this project, and the fact that we are
able to provide sensible choices in the first place (e.g., for a
pre-wipe and pre-drag pose).

Summary. We have now specified how we leverage our
cartesian impedance controller and RRT motion planner to
define our primitive actions. Although we have made many
manual engineering decisions and assumptions, our approach
is able to generalize easily across many problem instances that
satisfy our assumptions using our TAMP formulation.

V. EXPERIMENTAL RESULTS

A. Setup

We consider a 7-DOF KUKA iiwa robot arm with a Schunk
WSG 50 gripper in simulation. We implement our simulator,
motion planner and controllers in the Drake robotics frame-
work [18] with Python, and use Pyperplan with A∗ search with
and the hmax heuristic for task planning [19]. Since hmax is
an admissible heuristic, A∗ will give a least-cost plan [20].

For a given scenario, we specified the problem PDDL files
by hand. We model all free objects in our environment as
rigid bodies with varying mass and friction coefficients for
simplicity in modeling and implementation,

One important thing to note is that we switch between our
position controller and force controller while we execute our
plan. However, it is not possible to switch between controllers
on the real KUKA iiwa without rebooting the robot. Thus, if
we wish to transfer our code in simulation to reality, we may
consider switching to a Franka Emika Panda which supports
switching controllers on-the-fly.

In terms of RRT parameters, we run each iteration for a
maximum of 10 seconds or 100 iterations. We re-run RRT 5
times for each primitive in Section IV-D and select the plan
with the shortest length. We implement collision checking for
RRT by checking if there exists any unexpected contact forces
between objects in the environment for a given configuration
q. We note that our implementation is still buggy and needs
work, and we occasionally still observe collisions.

B. Results

It is not feasible to compare our approach against other
techniques, given the significant amount of engineering and
research effort required to get another TAMP method such
as PDDLStream [11] working, or training a reinforcement
learning based approach.

We focus instead on discussing our solution to the scenario
in Figure 1, which requires a composition of all the pick, place,
wipe and drag primitive skills. We also ran our algorithm on

Fig. 6. Execution of the final plan for the scenario in Figure 1 in progress.
We depict the state after the robot has executed Place(box, right bin) and
is now executing Pick(sponge, dustpan)

several simpler scenarios as we were building our system –
some of these videos are showcased on our project website3.

The scenario in Figure 1 requires us to reason about two
things: (1) that the flat blue box is blocking the red cube from
being wiped and hence needs to be dragged to the side of
the table before we wipe the red cube, and (2) the green box
must be removed before we can wipe any of the cubes into
the dustpan. In the goal state, the green and blue box must
be in the bin on the right, the cubes on the dustpan, and the
sponge in the left bin. The problem PDDL file is linked on
our project website. We note that the optimal plan requires
nine actions, which we believe is reasonably long-horizon for
a manipulation problem.

The first plan that our task planner returned was to pick up
the sponge and then wipe the red cube (a tomato) and orange
cube (a carrot), and then place the sponge in the left bin. This
plan obviously failed because the green box was blocking the
path to the dustpan and hence motion planning for wiping
failed. Our human oracle then removed all plans where we
wiped before picking and placing the green box, emulating
adding a precondition to the wipe action that the green box is
not on the table.

We then considered a plan in which the green box was first
picked and placed, and then we picked up the sponge to wipe
the cubes. Unfortunately, the blue flat box is blocking us from
‘going down’ from the pre-wipe position. Similarly, our human
oracle takes this geometric constraint into account.

Now, we have successfully reasoned about the restrictions
in this scenario and require both the book to be dragged out of
the way but not necessarily picked and placed, and the green
box to be removed from the table in order to wipe both cubes
into the dustpan.

The final plan that was executed was:
1) Drag(book, table)
2) Pick(book, table)
3) Place(book, right bin)
4) Pick(box, table)
5) Place(box, right bin)
6) Pick(sponge, dustpan)

3https://williamshen-nz.github.io/manipulation-project

https://williamshen-nz.github.io/manipulation-project


7) Wipe(carrot, table, dustpan)
8) Wipe(tomato, table, dustpan)
9) Place(sponge, left bin)

Figure 6 demonstrates our system execution in-progress. As
it is difficult to express this plan purely with images given it
involves several actions and sub-actions within the low-level
primitive operators, we provide the video demonstration here:
https://www.youtube.com/watch?v=j5t2DlDHMoU&t=147s.

Although we did use a human to add geometric constraints
to our task plans, it should be clear that this could all be
automated in code with significant engineering, as Srivastava
et al. did [4]. Using the TAMP formulation described in Sec-
tion IV, even if we did not add constraints if motion planning
failed, then we an show that our system will eventually find a
valid plan (in which case we would be doing task then motion
planning, not task and motion planning).

C. Limitations

As mentioned previously we made several assumptions to
ensure our project was feasible in the limited time frame and
as aimed to focus on motion planning and force control and
bring them together with TAMP. It is important to understand
these limitations as it restricts the current performance of our
system.

That being said, these assumptions may be lifted through
further research and engineering effort. We relist the most
limiting assumptions below:

• We assume perception is solved and that we know the
precise pose of each object.

• We use a human who is given a list of task plans to ‘filter
out’ unfeasible plans when we fail to motion plan at the
low-level.

• We use manually determined grasps as our grasp sampler.
• We only support straight line wiping in the y axis.

VI. CONCLUSION AND FUTURE WORK

We have developed a search-then-sample Task and Motion
Planning framework based on [4], which is capable of solving
table cleaning tasks which require reasoning and long-horizon
planning. We explored motion planning techniques through
RRT and bidirectional RRT, and force control through hybrid
force-position control and cartesian impedance control for
wiping and dragging. Our experimental results demonstrate
that we are able to successfully solve table cleaning problems
in simulation.

As future work, we may consider building a perception
pipeline which measures the poses, keypoints [21], or ge-
ometry of objects so we can determine their shape, size
and whether an object requires wiping, dragging or pick and
place. This would allow us to automatically generate problem
PDDL files. Using the geometry of an object, we could
also implement an algorithm that samples for stable grasps.
This could be achieved through training Convolutional Neural
Network for grasping [22] or using geometric techniques such
as analytical antipodal grasping [23].

Additionally, we could consider variants of RRT which
provide guarantees regarding optimality including RRT* and
PRM* [16], and hence reduce the amount of energy a robot
expends executing a plan. Finally, we may consider build-
ing more robust controllers and integrate the sampling of
their parameters, such as stiffness and damping for cartesian
impedance control, into our TAMP algorithm. We could also
investigate and compare other TAMP techniques including
PDDLStream [11].

DISCLAIMER – OVERLAP WITH RESEARCH

I am a first year PhD student in the Learning and In-
telligent Systems (LIS) lab supervised by Leslie Kaelbling
and Tomás Lozano-Pérez. Although I have a background
in classical/probabilistic planning, I had zero experience in
robotics (TAMP, motion planning, control, kinematics, etc.)
prior to taking this class.

This project has allowed me to explore topics that have
been covered in the lectures in more depth (motion planning,
force control) and also build a simple TAMP system which
has assisted in my ‘on-boarding’ for potential future research
in the LIS lab.

ACKNOWLEDGMENTS

We thank Professor Russ Tedrake, Rachel Holladay and
Dani White for their support in this project and throughout
the 6.843 Manipulation course.

REFERENCES

[1] Amazon, “Meet Astro, a home robot unlike any
other,” https://www.aboutamazon.com/news/devices/
meet-astro-a-home-robot-unlike-any-other, 2021.

[2] S. LaValle and J. Kuffner, “Randomized kinodynamic planning,” in
Proceedings 1999 IEEE International Conference on Robotics and
Automation (Cat. No.99CH36288C), vol. 1, 1999, pp. 473–479 vol.1.

[3] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, “Modelling, plan-
ning and control,” Advanced Textbooks in Control and Signal Processing.
Springer,, 2009.

[4] S. Srivastava, E. Fang, L. Riano, R. Chitnis, S. Russell, and P. Abbeel,
“Combined task and motion planning through an extensible planner-
independent interface layer,” in 2014 IEEE International Conference on
Robotics and Automation (ICRA), 2014.

[5] P. Haslum, N. Lipovetzky, D. Magazzeni, and C. Muise, “An introduc-
tion to the planning domain definition language,” Synthesis Lectures on
Artificial Intelligence and Machine Learning, vol. 13, no. 2, pp. 1–187,
2019.

[6] J. Kim, A. K. Mishra, R. Limosani, M. Scafuro, N. Cauli, J. Santos-
Victor, B. Mazzolai, and F. Cavallo, “Control strategies for clean-
ing robots in domestic applications: A comprehensive review,” In-
ternational Journal of Advanced Robotic Systems, vol. 16, no. 4, p.
1729881419857432, 2019.

[7] S. Elliott and M. Cakmak, “Robotic cleaning through dirt rearrangement
planning with learned transition models,” in IEEE International Confer-
ence on Robotics and Automation (ICRA). IEEE, 2018, pp. 1623–1630.

[8] J. Yin, K. G. S. Apuroop, Y. K. Tamilselvam, R. E. Mohan, B. Ra-
malingam, and A. V. Le, “Table cleaning task by human support robot
using deep learning technique,” Sensors, vol. 20, no. 6, p. 1698, 2020.

[9] J. Yang, J. Zhang, C. Settle, A. Rai, R. Antonova, and J. Bohg,
“Learning periodic tasks from human demonstrations,” arXiv preprint
arXiv:2109.14078, 2021.

[10] C. R. Garrett, R. Chitnis, R. Holladay, B. Kim, T. Silver, L. P. Kaelbling,
and T. Lozano-Pérez, “Integrated task and motion planning,” Annual
review of control, robotics, and autonomous systems, vol. 4, pp. 265–
293, 2021.

https://www.youtube.com/watch?v=j5t2DlDHMoU&t=147s
https://www.aboutamazon.com/news/devices/meet-astro-a-home-robot-unlike-any-other
https://www.aboutamazon.com/news/devices/meet-astro-a-home-robot-unlike-any-other


[11] C. R. Garrett, T. Lozano-Pérez, and L. P. Kaelbling, “Pddlstream:
Integrating symbolic planners and blackbox samplers via optimistic
adaptive planning,” in Proceedings of the International Conference on
Automated Planning and Scheduling, vol. 30, 2020, pp. 440–448.

[12] R. Holladay, T. Lozano-Pérez, and A. Rodriguez, “Planning for multi-
stage forceful manipulation,” in IEEE International Conference on
Robotics and Automation (ICRA), 2021.

[13] R. Tedrake, “Robot Manipulation: Perception, Planning, and Control
(Course Notes for MIT 6.881),” http://manipulation.csail.mit.edu/, 2021.

[14] B. Siciliano, O. Khatib, and T. Kröger, Springer handbook of robotics.
Springer, 2008, vol. 200.

[15] N. Hogan, “Impedance control: An approach to manipulation,” in 1984
American Control Conference, 1984, pp. 304–313.

[16] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” The international journal of robotics research, vol. 30,
no. 7, pp. 846–894, 2011.

[17] M. Jordan and A. Perez, “Optimal bidirectional rapidly-exploring ran-
dom trees,” 2013.

[18] R. Tedrake and the Drake Development Team, “Drake: Model-based
design and verification for robotics,” 2019. [Online]. Available:
https://drake.mit.edu

[19] Y. Alkhazraji, M. Frorath, M. Grützner, M. Helmert, T. Liebetraut,
R. Mattmüller, M. Ortlieb, J. Seipp, T. Springenberg, P. Stahl, and
J. Wülfing, “Pyperplan,” https://doi.org/10.5281/zenodo.3700819, 2020.
[Online]. Available: https://doi.org/10.5281/zenodo.3700819

[20] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE Transactions on Systems
Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[21] L. Manuelli, W. Gao, P. Florence, and R. Tedrake, “kpam: Keypoint
affordances for category-level robotic manipulation,” arXiv preprint
arXiv:1903.06684, 2019.

[22] S. Kumra and C. Kanan, “Robotic grasp detection using deep convolu-
tional neural networks,” in 2017 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2017, pp. 769–776.

[23] I.-M. Chen and J. W. Burdick, “Finding antipodal point grasps on irreg-
ularly shaped objects,” IEEE transactions on Robotics and Automation,
vol. 9, no. 4, pp. 507–512, 1993.

http://manipulation.csail.mit.edu/
https://drake.mit.edu
https://doi.org/10.5281/zenodo.3700819
https://doi.org/10.5281/zenodo.3700819

	Introduction
	Related Work
	Table Cleaning
	Task Planning Formulation
	Assumptions

	Our TAMP Framework
	TAMP Planner Logic (as shown in Figure 4)
	Force Control
	Motion Planning
	Primitive Operators

	Experimental Results
	Setup
	Results
	Limitations

	Conclusion and Future Work
	References

